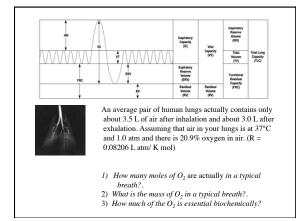


QUESTION

Typical total volume for human lungs is approximately 5,800 mL. At a temperature of 37°C (average body temperature) and pressure of 0.98 atm, how many theoretical number of moles of air can we carry inside our lungs? (R = 0.08206 L atm/ K mol)

- A) 1.9 mol
- B) 0.22 mol
- C) 230 mol
- D) 2.20 mol
- E) 0 mol: Moles can harm a person's lungs.


ANSWER

B)

The units for temperature must be in K, pressure in atm, and volume in L. Then using the universal constant 0.08206 L atm/ K mol :

 $n_{air} = PV / RT$ **n** air = 0.98 atm x 5.800 L/(37 + 273) K x 0.08206 L * atm/ K mol

 $n_{air} = 0.22 \text{ mol}$

QUESTION

An average pair of human lungs actually contains only about 3.5 L of air after inhalation and about 3.0 L after exhalation. Assuming that air in your lungs is at 37°C and 1.0 atm and there is 20.9% oxygen in air. (R =0.08206 L atm/ K mol)

How many moles of oxygen are actually in a typical breath?

A)	0.0020 mol
D)	0.000 mal

- 0.020 mol C) 0.030 mol
- D) 0.025 mol
 E) 0.0041 mol

An average pair of human lungs actually contains only about 3.5 L of air after inhalation and about 3.0 L after exhalation. Assuming that air in your lungs is at 37°C and 1.0 atm and there is 20.9% oxygen in air.

How many moles of O_2 are actually in a typical breath?.

$n o_{2(g)} = (20.9\%) * PV / RT$

 $n o_{2(g)} = (0.209 \text{ mol } o_{2(g)} / \text{ mol air}) \times 1.0 \text{ atm } \times (3.5 \text{ L}-3.0 \text{ L}) / 0.08206 \text{ L} * \text{ atm } \times 310 \text{ K})$

 $n o_2(g) = 0.0041 \text{ mol}$

ANSWER

An average pair of human lungs actually contains only about 3.5 L of air after inhalation and about 3.0 L after exhalation. Assuming that air in your lungs is at 37° C and 1.0 atm. (R = 0.08206 L atm/K mol)

How many moles of air are actually in a typical breath?

A)	0.0020 mol
	0.000

- B) 0.020 mol air
 C) 0.030 mol
- D) 0.025 mol
- E) 0.0041 mol oxygen
 - $n_{air(g)} = PV / RT$

 $n o_{2(g)} = (20.9\%) * PV / RT$

QUESTION

An average pair of human lungs actually contains only about 3.5 L of air after inhalation and about 3.0 L after exhalation. Assuming that air in your lungs is at 37° C and 1.0 atm and there is 20.9% oxygen in air:

What is the mass of O_2 in a typical breath?

A) 0.0041 mol x 16 g/mol B) 0.020 mol x 16 g/mol C) 0.0041 mol x 32 g/mol D) 0.020 mol x 32 g/mol

An average pair of human lungs actually contains only about 3.5 L of air after inhalation and about 3.0 L after exhalation. Assuming that air in your lungs is at 37° C and 1.0 atm and there is 20.9% oxygen in air.

What is the mass of O_2 in a typical breath?.

$n o_{2(g)} = (20.9\%) * PV / RT$

 $n o_{2(g)} = (0.209 \text{ mol } o_{2(g)} / \text{ mol air}) (1.0 \text{ atm } x (3.5 \text{ L}-3.0 \text{ L}) \text{ x} \text{ mol air} * \text{K} / 0.0821 \text{ L} * \text{ atm } x 300 \text{ K})$

 $n o_2(g) = 0.0041 \text{ mol}$

 $g o_2(g) = 0.0041 \text{ mol } x 32.0 \text{ g/mol}$ $g o_2(g) = 0.13 \text{ g}$

An average pair of human lungs actually contains only about 3.5 L of air after inhalation and about 3.0 L after exhalation. Assuming that air in your lungs is at 37° C and 1.0 atm

How much of the O_2 is essential biochemically?

Two estimates for a person with normal physical activity range from

0.67 - 0.84 kg of O_2 being used per day (NASA provided the higher value). How many breaths do you take in one day? ~ 5 mol % of the O_2 is actually used per breath.

Hard exercise increases this oxygen demand (intake) about 10 fold.

QUESTION

The primary source of exhaled $\rm CO_2$ is from the combustion of glucose, $\rm C_6H_{12}O_6$ (molar mass = 180. g/mol.). The balanced equation is shown here:

 $\mathrm{C_6H_{12}O_6}\left(aq\right) + 6 \operatorname{O_2}\left(g\right) \rightarrow 6 \operatorname{CO_2}\left(g\right) + 6 \operatorname{H_2O}\left(l\right)$

If you oxidized 5.42 grams of $C_6H_{12}O_6$ while tying your boots to climb Mt. Everest, how many liters of O_2 @ STP conditions did you use? (R = 0.08206 L atm/ K mol)

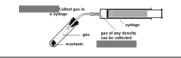
A) 0.737 L
B) 0.672 L
C) 4.05 L
D) 22.4 L

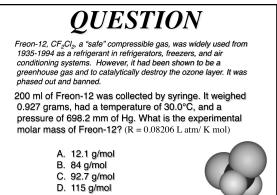
ANSWER

C) 4.05 L

 $\mathrm{C_6H_{12}O_6}\left(aq\right) + \mathbf{6} \operatorname{O_2}\left(g\right) \rightarrow \mathbf{6} \operatorname{CO_2}\left(g\right) + \mathbf{6} \operatorname{H_2O}\left(l\right)$

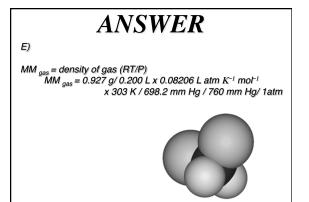
The number of moles of glucose must first be determined (5.42 g /180. g/mol = 0.0301 moles), then this is multiplied by 6 to account for the stoichiometric ratio between glucose and oxygen.


From this, V = nRT/P is used with the appropriate substitutions. (R = 0.08206 L atm/ K mol)


> = 6 x 0.0301 mol O₂(g) x 0.08206 L * atm mol-1 x 273 K/ 1 atm)

Molar Mass of a Gas

- $\delta PV = nRT$
- $\delta n = g \text{ of } gas/MM_{gas} [MM_{gas} = g/mol]$
- $\delta PV = (g of gas/MM_{gas})RT$
- $\delta MM_{gas} = g of gas/V (RT/P)$


Density of gas = g of gas/V [experimental] δ MM _{gas} = density of gas (RT/P)

E. 121 g/mol

OUESTION

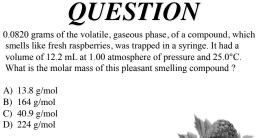
The density of an unknown atmospheric gas pollutant was experimentally determined to be 1.964 g/L @ 0 °C and 760 torr.

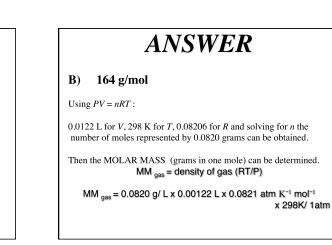
•What is the molar mass of the gas?

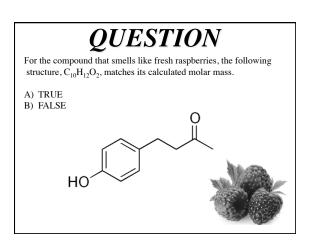
•What might the gas be?

A) CO B) SO2 C) H2O D) CO_2

ANSWER


CO (28g/mol) SO₂ (62g/mol) H₂O (18g/mol) CO₂ (44g/mol) 1.964 g/ L @ 0 °C and 760 torr.


- $R = 0.08206 L atm K^{-1} mol^{-1}$ $^{o}C \rightarrow K$
- torr \rightarrow atm


MM _{gas} = density of gas (RT/P) $MM_{gas}^{0} = 1.964 \text{ g/L} \times 0.08206 \text{ L} \text{ atm } K^{-1} \text{ mol}^{-1}$ x 273K/ 760 torr x 760 torr/ 1atm

MM _{qas} = 44.0 g/mol

D) CO2

